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The results of neutron-scattering and angle-resolved photoemission experiments for the Fe-pnictide parent
compounds, and their metallic nature, are shown to impose severe constraints on the range of values that can
be considered “realistic” for the intraorbital Hubbard repulsion U and Hund coupling J in multiorbital Hubbard
models treated in the mean-field approximation. Phase diagrams for three- and five-orbital models are here
provided, and the physically realistic regime of couplings is highlighted, to guide future theoretical work into
the proper region of parameters of Hubbard models. In addition, using the random phase approximation, the
pairing tendencies in these realistic coupling regions are investigated. It is shown that the dominant spin-singlet
pairing channels in these coupling regimes correspond to nodal superconductivity, with strong competition
between several states that belong to different irreducible representations. This is compatible with experimental

bulk measurements that have reported the existence of nodes in several Fe-pnictide compounds.
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I. INTRODUCTION

An exciting new area of research has recently opened
with the discovery of superconductivity in the Fe
pnictides.'~” These materials present many similarities with
the high-temperature superconductors based on copper but
also several differences. Both families have layered struc-
tures suggesting that theoretical studies in two-dimensional
lattices should be able to capture the essence of the pairing
mechanism. In the undoped limit, both types of compounds
are magnetic, with wave vector (7r,0) in the case of the
pnictides®® and (7, 77) for the cuprates, in the notation of the
square lattice defined by Fe or Cu. However, a crucial dif-
ference is that the undoped parent compound is an insulator
for the cuprates while it is a (bad) metal for the pnictides.
This fact already suggests that the regime of a large Hubbard
coupling U, widely used in the context of the cuprates, may
not be appropriate for a theoretical description of the pnic-
tides.

Adding to the complexity of this problem, it is also clear
that a theoretical study of pnictides cannot rely on just
one orbital, as in the case of the cuprates, but it needs
a multiorbital approach.'® In fact, to study the magnetic
and superconducting properties of the pnictides, a consider-
able effort has already started using multiorbital model
Hamiltonians.''=3* Having to consider multiple orbitals se-
verely restricts the available tools to carry out unbiased
computer-based investigations of Hubbard multiorbital mod-
els. As a consequence, several studies have been restricted to
mean-field approximations. Fortunately, this is not a drastic
limitation for the case of the undoped systems since similar
mean-field approximations for the cuprates are known to
capture qualitatively the essence of the magnetic states.>* In
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fact, recent mean-field-based efforts for the pnictides have
already reported the presence of a state that is simultaneously
metallic and magnetic.'® However, the study of the interme-
diate coupling regime, where the magnetic-metallic state was
found, establishes a considerable challenge to theory since an
intermediate region of couplings is often more difficult to
analyze than either extreme of large or small U. In addition,
a multiorbital Hubbard approach needs at least two cou-
plings: the on-site intraorbital Hubbard repulsion U and the
on-site Hund coupling J. (A third parameter, the on-site in-
terorbital repulsion U’, is then defined by the well-known
relation U=U'+2J arising from symmetries in orbital
space.®) Having two couplings increases further the com-
plexity of the analysis and the comparison between different
approaches since there is at present no universally accepted
range of U and J that is considered realistic by the commu-
nity of experts. In fact, it would be quite desirable to restrict
the values of the U and J couplings used in the literature to a
much narrower range, where qualitative agreement with ex-
periments is observed.

In this paper, our goal is to use experimental neutron-
scattering and photoemission data for the undoped pnictide
parent compounds, supplemented by their well-known metal-
lic properties, to establish lower and upper bounds on the
couplings U and J of multiorbital Hubbard models. By fo-
cusing on a more restricted set of couplings, our results will
guide future theoretical efforts into a realistic regime for the
pnictides. Our calculations are based on the previously used
and tested mean-field approximation,'® allowing us to calcu-
late a variety of observables that are then compared against
experimental results to establish the proper ranges for U and
J.

To carry out this theory-experiment comparison the focus
here is on the results of two powerful experimental tech-
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niques. One of them is neutron scattering. In these experi-
ments, a magnetic order with wave vector (77,0) (in the Fe
square-lattice notation) was observed at low temperatures.®?
This particular wave vector can be theoretically accommo-
dated by merely using proper tight-binding model Hamilto-
nians that reproduce the well-known paramagnetic Fermi
surface (with hole and electron pockets). More important for
our purposes is the actual value of the ordered moment for
the iron spin, up.. Table II of Ref. 8 and Table II of Ref. 9
provide a summary of the neutron-scattering experimental
values for up.: within the 1111 and 122 families they range
from 0.25 for NdOFeAs to ~1 for SrFe,As, and BaFe,As,
(the 11 family has substantially larger values of ug,, but their
ordering wave vectors are different, indicating that the 11
compounds require a special discussion beyond the scope of
this work). Since the mean-field investigations reported here
focus on the mean-field solution corresponding to wave vec-
tor (77,0), the theoretical value of g, can be obtained when
varying the couplings in the Hubbard model, and a range
compatible with experiments can be found. Not surprisingly,
considering the (bad) metallic character of these compounds,
the range of interest will be shown to correspond to interme-
diate values of the on-site repulsion U, as also discussed
before.'®2> However, our investigations below show that siz-
able constraints over the Hund coupling J, not explored be-
fore, can also be obtained.

Another powerful experimental technique that will help
us to establish constraints on the couplings of the Hubbard
models is angle resolved photoemission spectra (ARPES).
Applying this technique, several reports describing the Fermi
surface of the pnictides have been presented, including their
temperature evolution. Here, the vast ARPES literature will
not be comprehensively reviewed but the focus will be on
the results for the undoped compounds in the spin-density-
wave (SDW) regime. In particular, it has been reported by
several groups that in this magnetically ordered state the
Fermi surface presents extra “features” in the vicinity of the
I'-point hole pockets that are not present in band-structure
calculations for the paramagnetic state. These extra features,
mainly found for the 122 compounds, are described as the
existence of “satellite” pockets caused by V-shaped bands (or
by V-shaped band crossings).**=*? Our focus will be on try-
ing to reproduce qualitatively with mean-field approxima-
tions these type of satellite extra features that ARPES inves-
tigations have systematically reported in the magnetic state.
Note that near the original electron pockets at (7,0) and
(0,77) there are also several reports of interesting modifica-
tions of the paramagnetic band structure when at low tem-
peratures. However, in our opinion, the ARPES analysis of
the modifications to the band structure electron pockets ap-
pears less robust due to the presence of considerable noise in
the raw data, more than for the case of the hole pockets. For
this reason, the focus here will be on the existence of satellite
pockets at low temperatures near the original I'-point hole
pockets. Note also that these satellite features have been
given an electronlike character in some publications®® but
considering the uncertainties in ARPES studies, mainly
caused by the considerable backgrounds, our analysis below
will focus on finding regions in the U-J/U plane where any
kind of extra pocket is induced by the magnetic order close
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to the original I'-point hole pockets, regardless of whether its
character is electronlike or holelike.

While finding constraints on U and J in multiorbital Hub-
bard models is already interesting, our effort here continues
with the analysis of the pairing states that are obtained in
those “realistic” U-J/U regions, via the use of the random
phase approximation (RPA).2!2?> Exploring pairing tenden-
cies is important since there is a growing controversy in the
Fe pnictides investigations with regards to the symmetry of
the superconducting order parameter. While a variety of pho-
toemission experiments report the absence of nodes,*>~*® at
least clearly with regards to the I'-point hole pockets, other
bulk experiments report results compatible with a nodal su-
perconducting state.**-%° This controversy has not been re-
solved and it is one of the most important open problems in
pnictides. Our investigations show that in the realistic U-J/ U
regimen identified here, for both three- and five-orbital mod-
els, the RPA dominant superconducting state is nodal [this
includes the A, state with zeros (or near zeros) of the order
parameter]. Moreover, within RPA there is a clear competi-
tion between a variety of states belonging to different irre-
ducible representations suggesting that different pnictides
may have different symmetries with regards to the supercon-
ducting order parameter. All these competing states are nodal
or quasinodal, at least within the limitations of our approxi-
mations.

The organization of this manuscript is the following. First,
the models and technique used are presented in Sec. II. This
is followed in Sec. III by the search for a realistic U-J/U
regime for the three-orbital model. The case of five orbitals
is presented in Sec. IV. The dominant RPA pairing tendencies
in the realistic regime are presented in Sec. V. Finally, con-
clusions are provided in Sec. VL.

II. MODELS AND TECHNIQUES
A. Model Hamiltonians

In this effort, the three-orbital Hubbard model introduced
in Ref. 31 will be used first. This model is purely based on
the d electrons of Fe and it considers only the three orbitals
d,, d,., and d,, widely believed to be the most relevant
orbitals at the Fermi surface for the pnictides. The reader is
referred to the original publication®' for a full description of
the model and its band structure (which is in good agreement
with ab initio calculations). In momentum space, the model
includes a tight-binding term defined as

Hrg(k)= X T (K)dy, .o (1)

K,ouv
with

T' =21, cos k, + 2t cos ky+4t5 cos k, cos k,— u, (2)
T%2 =21, cos k, + 21, cos ky +4t5 cos k, cos k,— u, (3)

T3 = 215(cos k, + cos ky) +4tg cos k, cos ky— p+ A,

(4)

T'2 = 7% = 44, sin k, sin ky, )
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TABLE 1. Parameters for the tight-binding portion of the three-
orbital model used here. The overall energy unit is electron volts.

1 1) 13 ty ts tg t7 tg A,
0.02 006 0.03 -001 02 03 =02 -t/2 04
T = T3 = 2it; sin k, + 4itg sin k, cos ky, (6)
7% =732 =2it, sin ky + 4itg sin k,, cos k, , (7)

where a bar on top of a matrix element denotes the complex
conjugate. 4 and v range from 1 to 3 and label the orbitals
d.. (1), dy. (2), and d,, (3). Since the Hamiltonian for a
one-iron unit cell is here considered, then k runs within the
corresponding extended Brillouin zone (BZ) —m<k,,k,= .
The actual values for the hopping amplitudes are in Table 1.

The Coulombic interacting portion of the three-orbital
Hamiltonian is given by

Hyp=U2 i Mg, + (U = JI2)
i,a

X 2 ni’ani’ﬁ—Zl 2 Si’a-Si’B+J

iL,a<p i,a<p
X D (dl .di dig digs+Hc) (8)
i,0,1%,a,[“1.8,191,8,7 )
i,a<p

where a,8=1,2,3 denote the orbitals, S; , (n; ,) is the spin
(electronic density) of orbital « at site i (this index labels
sites of the square lattice defined by the irons), and the rela-
tion U'=U-2J between the Kanamori parameters has been
used.®! The first two terms give the energy cost of having
two electrons located in the same orbital or in different or-
bitals, both at the same site, respectively. The second line
contains the Hund’s rule coupling that favors the ferromag-
netic alignment of the spins in different orbitals at the same
lattice site. The “pair-hopping” term is in the third line and
its coupling is equal to J by symmetry. Note that the values
used for U and J can be substantially smaller than the atomic
ones because the interactions may be screened by bands not
included in the Hamiltonian. The Coulombic interaction
terms introduced above have been used and discussed in sev-
eral previous publications'31820.2531 where more details can
be found by the readers. All energies are provided here in
electron volts. As shown in Ref. 31, the electronic density of
relevance for this model is n=4 to reproduce the expected
Fermi surface in the paramagnetic regime.

In the present investigation, two five-orbital models (also
based only on the d electrons of Fe) have also been used, at
electronic density n=6. By supplementing the three-orbital
model by more complicated five-orbital versions, our main
goal is to verify the self-consistency of our approach. In
other words, if the many models, with similar Fermi surfaces
by construction, would give quite different ranges of cou-
plings for the compatibility with neutron and ARPES results,
then this would raise concerns about the entire calculation. It
turns out that, as shown below, the J/ U and U ranges that are
found to be physically reasonable are similar in all cases,
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demonstrating that our approach is self-consistent. With re-
gards to the specific five-orbital models used here, the tight-
binding parameters of one of them are in the Appendix while
another set of hoppings is from Ref. 21. At U=0, all these
models provide a Fermi surface (see below) that compares
well with experiments and band structure calculations for the
122 compounds. The Coulombic interactions for five-orbitals
are the obvious generalization of the terms used for three
orbitals.

B. Mean-field approximation

To study the ground-state properties of the models intro-
duced before, a mean-field approximation will be applied.
This approximation was already presented in previous
publications'®?> but it is here also discussed for complete-
ness. The simple standard assumption of considering only
the mean-field values for the diagonal operators is followed®>

(o) = | 1+ 005 T, | 830,080 (9)
where q is the ordering wave vector of the magnetic order.
n, and m, are mean-field parameters (to be determined self-
consistently) describing the charge density and magnetiza-
tion of the orbital u, respectively. The rest of the notation is
standard. Applying Eq. (9) to Hj,, the mean-field Hamil-
tonian in momentum space can be written as

— il
Hyg=Hg+C+ 2 €y, A o
k,u,0

+ E nu,a(dli,ﬂ,adk+q,,u,,0'+ dlt+q,p,,0dk,/.t,0')7 (10)

k,p,0o

where k runs over the extended first BZ, Hrg is the hopping
term in Eq. (1), the constant C is

C=-NUD, ( /2£_ mi) -NQU' —J)Emﬁvnﬂn,,
©w

N is the number of sites and the following definitions were
introduced:

€,=Un,+2U =) 2 n, (11)
vFEL
o
77#,0=—E(Um#+JE m> (12)
VFE U

The mean-field Hamiltonian can be numerically solved
for a fixed set of mean-field parameters using standard li-
brary subroutines. n, and m, are obtained self-consistently
by minimizing the energy via an iterative process. During the
iterations > W =n was enforced at each step, such that the
total charge density is a constant (four for the three-orbital
model and six for the five-orbital models). The reader should
assume that these are the electronic densities used for these

models throughout the manuscript, both in the mean-field
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FIG. 1. (Color online) Mean-field order parameter at wave vec-
tor (77,0) vs U (in eV units) for the three-orbital model discussed in
the text and parametric with the values of J/ U indicated.

approximation and for the RPA approximation as well. Note
also that the numerical solution of the mean-field Hamil-
tonian immediately allows for the calculation of the band
structure, density of states, and magnetization (m=2 Wn u) at
the ordering wave vector . Moreover, the photoemission
spectral function can also be calculated, as explained in Ref.
18.

III. RESULTS FOR THE THREE-ORBITAL MODEL

Our discussion of results starts with the three-orbital
model. Some aspects of this discussion have been briefly
mentioned in other publications, thus references to those pre-
vious efforts are provided where appropriate.

A. Comparison with neutron-scattering experiments

Figure 1 contains the mean-field order parameter (m) at
wave vector (7,0) vs U. The plotted values for m arise from
the numerical solution of the mean-field equations discussed
in the previous section. For small values of J/ U, such as 0.00
and 0.05, in Fig. 1 m discontinuously jumps from zero to a
robust value at a critical U. While such a discontinuity is
observed in all models discussed in this paper, its origin is
not universal. It is caused by a metal-insulator transition in a
four-band model, see Sec. IIC4 of Ref. 18. In the three-
orbital model, the discontinuity only coincides with the
opening of a gap for smaller J/U=<0.15, and is rather
marked by the sudden onset of strong orbital order, with a
close competition between substantial alternating and nearly
perfect ferro-orbital order.’! For larger 0.15<J/U=<0.22,
states with both types of orbital order can remain metallic for
a small range of U just above the onset of strong orbital
order but the FS is qualitatively very different from ARPES
results, e.g., it does not feature any sign of hole pockets
around the I" point.3! At or rapidly after the critical U, the
density of states develops a gap (not shown), signaling insu-
lating behavior, in contradiction with the experimentally ob-
served (bad) metallic character of the undoped pnictides.
Moreover, as a consequence of the discontinuity, the order
parameter m in the range of small J/U never reaches the
realistic values for pnictides reported in neutron scattering
experiments, i.e., [0.25,1.0] for (7r,0) magnetic order. Thus,
these results for small J/ U start illustrating one of the main
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messages of this publication, namely, that within the mean-
field approximation used in our effort the request of qualita-
tive agreement with the experimental properties of the un-
doped pnictides imposes severe constraints on the values of
U and J/ U for the multiorbital Hubbard models. In particu-
lar, it is clear that J/U=0.00 and 0.05 do not seem physically
appropriate to describe the pnictides.

As J/U increases further, m now develops (becomes non-
zero) at an earlier critical value of U, allowing for a proper
description of materials with weak magnetic order param-
eters such as the “1111” family. Note that for J/U=0.10,
0.15, and 0.20, a discontinuity is still present in m vs U, so
not all values of the order parameter m are possible, while
for larger J/Us the m curves are no longer discontinuous.
J/U=0.50 is the largest ratio that should be considered to
avoid a negative U’ due to the relation U=U'+2J. Thus,
adding this information to the results for m and its compari-
son with neutron scattering, the proper range of J/U cou-
plings naively becomes ~[0.10,0.50], with U larger than the
first critical value where m develops. However, if in addition
it is considered that J should be smaller than U’, then this
reduces the range further to [0.10,0.33], since J=U' at J/U
=1/3.

B. Comparison with ARPES experiments

As discussed in Sec. I, another experimental source of
information that can be used to reduce the allowed range of
couplings in the Hubbard model is provided by the ARPES
results for undoped pnictides. As previously mentioned, a
common generic feature of several ARPES experiments at
low temperatures in the SDW phase is the development of
“extra” features (pockets) near the original I'-point hole
pockets of the noninteracting limit. To search for these fea-
tures, within our mean-field approximation the one-particle
spectral function A(k,w) has been calculated, and the Fermi
surface results have been analyzed in a wide range of U and
J/U, using a &-function broadening 0.025 eV.

Shown in Fig. 2 are representative results of our ARPES
calculations (see also Refs. 31 and 33). The focus is on a
range of J/U and U where mean-field ARPES contains a
I'-point hole pocket, as in the original U=0 band structure
(presumably corresponding to the high-temperature nonmag-
netic regime as well), and in addition “satellite” pockets as in
ARPES, in between the original hole and electron pockets
along the k, axis. The results have not been folded, but are
representative of a single-domain spin order wave vector, in
this case (77,0), and with only one Fe per unit cell. Figure 2
shows representative cases where these satellites are clearly
present [the satellite pockets tend to be electronlike for small
U, switching to holelike for slightly larger, but still realistic,
values of U (for more details see Ref. 31)]. The correspond-
ing values of J/U and U are indicated in the figure caption.
These physically acceptable Fermi surfaces from the ARPES
perspective are found in the same approximate range of cou-
plings as those selected from the m/neutrons perspective, as
discussed above. It has been suggested before that a reduced
ordered magnetic moment goes together with realistic
A(k, ) in numerical approaches such as density-functional
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FIG. 2. (Color online) Unfolded mean-field Fermi surfaces for
the three-orbital model corresponding to (m=order parameter) (a)
U=0, as reference (there are two hole pockets at I" but they appear
merged due to the broadening used for plotting); (b) J/U=0.33,
U=0.6, and m=0.2; (c) J/U=0.20, U=1.0, and m=0.4; and (d)
J/U=0.25, U=1.05, and m=0.6.

theory®® and the present mean-field scheme,®® and we see
here that this is not accidental, but that the analysis of both
neutrons and ARPES are mutually consistent over a larger
parameter range, as well as for a variety of models, see Sec.
IV. The four panels shown are qualitatively similar and fur-
ther refinements in the so-called “physical region” (see Fig.
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FIG. 3. (Color online) Unfolded band structure mean-field re-
sults for the three-orbital model and cases (a) U=0, as reference; (b)
J/U=0.33, U=0.6, and m=0.2; and (c) J/U=0.25, U=1.05, and
m=0.6. Panels (b) and (c) show a V-shaped pocket in between the
(0,0) and (77,0) points. The scale used (arbitrary units) is on the
right of the panels.

4) will need better tools for calculations and more accurate
ARPES experiments.

In Fig. 3, some of the full spectral functions are shown
and compared with the U=0 case. The appearance of
V-shaped features, that induce the presence of satellite pock-
ets, is clear in these figures. These mean-field results for
A(k, w) are qualitatively consistent with ARPES experiments
for the pnictides that have reported similar V-shaped
branches.®

The results of Fig. 2 are in qualitative agreement with
experiments, as already remarked in Ref. 33. Moreover, our
comprehensive analysis of A(k,w) has shown that these fea-
tures do not appear in other regions of the U-J/U phase
diagram. For instance, before the critical U where m devel-
ops from zero there are no satellite pockets since they arise
from the nonzero magnetic order and nesting effects. In the
other extreme of U couplings larger than those used in Fig. 2,
the Hubbard model simply becomes insulating (as discussed
before in Ref. 18), and there is no longer a Fermi surface.

C. Summary phase diagram for three orbitals

The values of the order parameter m and their comparison
with neutron-scattering results, and the Fermi surfaces and
their comparison with photoemission experiments, lead us to
the mean-field phase diagram shown in Fig. 4, one of the
main results of this effort. In this figure, the range of U-J/U
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FIG. 4. (Color online) Phase diagram for the three-orbital model
obtained with the mean-field approximation described in the text.
The physical region in yellow is the regime of couplings found to
be compatible with neutron and photoemission experiments. The
“nonmagnetic” region corresponds to a regime where the state has a
zero order parameter. In the “insulator” region, there is no Fermi
surface and the state is insulating. The “discontinuity” label corre-
sponds to the discontinuous jump in the order parameter shown in
Fig. 1. The entire “magnetic metallic” regime could in principle
have been compatible with experiments but only in the yellow high-
lighted region is that m is sufficiently small intermediate in value
and the Fermi surface has satellite pockets near the I'-point hole
pockets.

couplings compatible with neutron-ARPES experiments is
labeled physical region. This region is relatively small, pro-
viding substantial constraints on the parameters to be used in
three-orbital Hubbard model investigations. If U is smaller
than in the physical region, then the state is not magnetic; if
U is larger, the state is insulating or it has a much distorted
Fermi surface. If J/U is smaller than in the physical region,
there is no room for the small and intermediate value order
parameters found in neutron scattering; if J/ U is larger, then
U’ becomes too small or negative and thus unphysical.

It is important to clarify that our mean-field approxima-
tion does not incorporate the effect of fluctuations. For this
reason this type of approximations are somewhat “rigid” and
it can be expected,” although actual calculations are very
difficult, that the true physical region may be larger than
shown in Fig. 4. Thus, readers should consider the location
of our physical regions as the center of a potentially broader
area where agreement with experiments can be found. But
this does not invalidate our main point: intermediate U’s and
intermediate J/ U’s are needed for agreement with available
neutrons, transport, and photoemission experiments.

A final remark is with regards to the actual value of U of
order just 1 eV in the physical region: this cannot be the bare
U but must already incorporate the influence of screening in
a model where the long-range Coulomb interactions are in-
cluded. It is for this reason that standard metals in general
tend to have very small Us when studied via Hubbard-type
models while it is known that the bare atomic values for U
are always of several electron volts.®

IV. RESULTS FOR FIVE-ORBITAL MODELS

In this section, results for two five-orbital models are pre-
sented with a similar organization as for three orbitals. The
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FIG. 5. (Color online) Mean-field order parameter at wave vec-
tor (77,0) vs U (in eV units) for the five-orbital Model 1 discussed
in the text, parametric with the values of J/U indicated. Note the
presence of a critical U where the order parameter first develops
and a second critical U where a discontinuity occurs (see also Ref.
18).

hopping amplitudes and on-site energies of a novel “Model
17 are provided in the Appendix [using as criterion for their
determination finding qualitative agreement with band calcu-
lations, as shown in Fig. 6(a)]. The more accurate “Model 2”
is the model introduced in Ref. 21, where the reader can find
the actual values of the parameters. These two models gen-
erate similar Fermi surfaces but the values for the hopping
amplitudes are rather different. Thus, they are useful to test
whether our conclusions do or do not depend on small de-
tails. Indeed, an overall conclusion of our study is that the
physical region is qualitatively similar for all the models
analyzed in this manuscript. Both models studied in this sec-
tion are at electronic density n=6.0 in order to address the
parent compounds.® The §-function broadening used here is
0.01 eV.

A. Comparison with neutron scattering for Model 1

The mean-field order parameter at wave vector (7,0) vs.
U for Model 1 is shown in Fig. 5, parametric with J/U.
These results are in several aspects qualitatively similar to
those discussed before for three orbitals in Fig. 1 but there
are some differences. For instance, in this case a discontinu-
ity in m is found for all the values of J/ U investigated. This
shows that for this model and using mean-field techniques,
there is a range of values of m (roughly between 1 and 2.5
depending on J/U) for which there are no solutions. It turns
out that neutron-scattering experiments for 1111 and 122 ma-
terials have unveiled low to intermediate values of m, and
such order parameters fit in the range where the mean-field
analysis provides stable solutions. Thus, for the case of five
orbitals, the comparison between the order parameter m and
neutron scattering simply restricts U to be between the first
critical value, where m develops, and the second critical cou-
pling where the discontinuity occurs. This range is larger for
small J than for larger values.?®> However, it should be noted
that the magnetization in each orbital is parallel even for
small J and U, in contrast to the state with antiparallel orbital
magnetization found in Ref. 25, and in contrast to the model
discussed in Sec. IV D. The small overall magnetic moment
results here from weak magnetization of the individual orbit-
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als rather than from their partial cancellation.

B. Comparison with ARPES experiments for Model 1

The comparison between the mean-field one-particle
spectral function for the five-orbital models and ARPES ex-
periments introduces more severe restrictions on the values
of J/U and U than those discussed before in the neutron
scattering context. Figure 6 shows the Fermi surfaces of
Model 1 for special values of J/U and U in a region com-
patible with ARPES. Qualitatively, these results resemble
those of the three-orbital model: there are remnants of the
original hole and electron pockets of the noninteracting limit
and, in addition, there are satellite features near the I'-point
[and also near the original noninteracting electron pocket at
(,0)].

Figure 7 shows the actual bands for the five-orbital Model
1 for the noninteracting case and one example of a set of
couplings with satellite pockets created by the magnetic or-
der. While qualitatively similar to the results for three orbit-
als (Fig. 3) there are some interesting differences: here the
V-shaped features that originate the satellite pockets arise
from a combination of two bands while for three orbitals
they emerge from the bending of a single band (see also Ref.
33). However, the level of accuracy of the ARPES experi-
ments is not sufficient to distinguish between these two
cases, plus there is still room to further refine the hopping
amplitudes of the models used here to adjust for finer details
of the ARPES experiments.

Even in regions of parameter space where the ground
state is magnetic and metallic, and the order parameter is in
the range of neutron’s experiments, the Fermi surface may
still be qualitatively different from that observed in ARPES.
As an example, consider the case shown in Fig. 8 corre-
sponding to J/U=0.10. These mean-field results for A(k, w)
are clearly different from those shown before in Fig. 6, and
regions where this type of discrepancies are found are re-
moved from the physical region for the model.

C. Summary phase diagram for the five-orbitals Model 1

Similarly as for three orbitals, here a summary phase dia-
gram is provided for the five-orbital Model 1 in Fig. 9. The
labeling convention is the same as for three orbitals in Fig. 4.
Using the information about neutron scattering and order pa-
rameters restricts U and J/ U simply to be between the non-
magnetic region and the discontinuity line. From these per-
spectives alone the physical region would be much larger
than for the three orbitals case. However, considering the
Fermi surface shape and its comparison with ARPES intro-
duces more severe constraints, basically excluding the small
J/ U regime below 0.15. As a consequence, the final physical
region ends up being similar to that obtained with the three-
orbital model. As explained in Sec. III C, note also that fluc-
tuations beyond our mean-field approximation are expected
to render the physical region actually larger than displayed in
Fig. 9.

D. Comparison with neutron scattering for Model 2

The mean-field order parameter at wave vector (7,0) vs
U is shown for Model 2 in Fig. 10, parametric with J/U.
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FIG. 6. (Color online) Unfolded Fermi surfaces of the five-
orbital Model 1 in the mean-field approximation for the cases (a)
U=J=0, as reference; (b) J/U=0.23, U=1.25, and m=0.2; (c¢)
J/1U=0.28, U=1.45, and m=0.7; and (d) J/U=0.30, U=1.4, and
m=0.7. As in the case of three orbitals (Fig. 2) and as in ARPES
experiments, the results show distorted I'-point hole pockets and
satellite features next to them [and also next to the electron pockets
at (7,0)].

Compared with the results for Model 1 in Fig. 5, note that
now the discontinuity in the order parameter occurs only at
small J/ U. In this respect, the results for Model 1 are similar
to those recently reported for a similar model,>> where small
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FIG. 7. (Color online) Unfolded band structure mean-field re-
sults for the five-orbital Model 1 and cases (a) U=J=0, as refer-
ence, and (b) J/U=0.28, U=1.45, and m=0.7, illustrating in (b) the
origin of the satellite pockets shown in Fig. 6. The scale used (ar-
bitrary units) is on the right.

J/U and intermediate U were emphasized (see also Ref. 18).
This similarity persists in the microscopic details of the state
realized at small J: the values for the magnetization of dif-
ferent orbitals can here have a different sign, i.e., the
intermediate-spin state with antiparallel orbital magnetiza-
tion discussed in Ref. 25 is stabilized. While neutron scatter-
ing can only detect the overall moment and is not expected to
distinguish between this scenario and the one with parallel
magnetization found in other models, the precise micro-
scopic nature of the state realized in iron pnictide compounds
remains to be clarified.

E. Comparison with ARPES experiments for Model 2

Similarly as presented for Model 1 and for the three-
orbital model, Fig. 11 shows the Fermi surfaces for special
values of J/U and U in a region found to be qualitatively
compatible with ARPES. These Fermi surfaces show rem-
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FIG. 8. (Color online) Fermi surface of the five-orbital Model 1
in the mean-field approximation for the case J/U=0.10, U=2.1,
and m=0.36. The lack of qualitative similarity with ARPES experi-
ments shows that these couplings are not physically relevant to
describe the pnictides.
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FIG. 9. (Color online) Phase diagram for the five-orbital Model
1 obtained with the mean-field approximation. As in Fig. 4 the
physical region in yellow is the regime of couplings found to be
compatible with neutron and photoemission experiments. The rest
of the notation and details were already explained in Fig. 4.

nants of the noninteracting Fermi surfaces, plus satellite ex-
tra features near the I" and (77,0) points. Note that the char-
acter of these satellites, namely whether they are electron or
hole pockets, depends on details and our focus has only been
on the existence of extra features in the correct location as
compared with ARPES. Figure 12 shows the bands for the
five-orbital Model 2, both for the noninteracting case and for
one example from the set of couplings used in Fig. 11. Most
of the comments already made for the band structure of
Model 1 with regards to the V-shaped features apply to
Model 2 as well. However, it is interesting to notice that the
satellite pockets are mainly electronlike for Model 1 and
holelike for Model 2.

F. Summary phase diagram for the five-orbitals Model 2

As for the other models considered in this effort, in Fig.
13 a summary phase diagram is provided for the five-orbital
Model 2. The labeling convention is the same as in Figs. 4
and 9, as well as the procedure to establish the so-called
physical region. The approximate location of this region with
regards to U and J/ U is similar to that reported in Figs. 4 and
9, showing again that our conclusions do not strongly depend
on details. The physical region in Fig. 13 is narrow along the

4.0
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FIG. 10. (Color online) Mean-field order parameter at wave vec-
tor (7,0) vs U (in eV units) for the five-orbital Model 2, parametric
with the values of J/U indicated. Note that compared with Fig. 5,
the discontinuity in the order parameter now only occurs at small
JIU.
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FIG. 11. (Color online) Unfolded Fermi surfaces of the five-
orbital Model 2 in the mean-field approximation at n=6.0, for (a)
U=J=0, as reference; (b) J/U=0.20, U=1.35, and m=0.2; (c)
J/U=0.25, U=1.35, and m=0.5; and (d) J/U=0.30, U=1.25, and
m=0.6. As in the previous cases (Figs. 2 and 6) and as in ARPES
experiments, the results show distorted I"-point hole pockets and
satellite features next to them [and also next to the electron pockets
at (7,0)].

U axis direction because m changes rapidly with increasing
U, at small m. But, as discussed in Sec. III C, fluctuations
beyond mean-field approximations are expected to expand
the size of the physical regions of the various models.
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FIG. 12. (Color online) Unfolded band structure mean-field re-
sults for the five-orbital Model 2 and cases (a) U=J=0, as refer-
ence, and (b) J/U=0.25, U=1.35, and m=0.5, illustrating in (b) the
satellite pockets shown in Fig. 11. The scale used (arbitrary units) is
on the right. Note the similarity of these results with those of Fig. 7

V. RPA PAIRING SYMMETRIES ANALYSIS

After having established a regime of couplings U and J/U
where the mean-field approximation to the multiorbital Hub-
bard model gives a qualitative agreement with neutron and
ARPES experiments, and also with the metallic nature of the
undoped compounds, it is interesting to investigate what kind
of pairing tendencies are observed in those regions of param-
eter space. Unfortunately, the number of many-body tools
available to carry out such investigation is very small. While
for the two-orbital model it is possible to carry out Lanczos
studies on small clusters'? to at least analyze the quantum
numbers of the ground state with two extra particles, for
three orbitals or more this calculation is no longer practical.
There are also no sign-problem-free Monte Carlo techniques
available for these complex calculations. Thus, here the ran-
dom phase approximation will be used. Experience with the
cuprates indicates that this method did capture the relevance
of d-wave pairing in that context and for this reason it will be

4.5
4.0 r .
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35 r
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2.5 metallic

20 r iscontinuity

15+
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05 | non-magnetic
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phys’i/cal region
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FIG. 13. (Color online) Phase diagram for the five-orbital Model
2 obtained with the mean-field approximation. As in Figs. 4 and 9,
the physical region in yellow is the regime of couplings found to be
compatible with neutron and photoemission experiments. The rest
of the notation and details were already explained in Fig. 4.
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used here as well, although with the caveat that the method is
qualitative at best. RPA has been recently applied to the five-
orbital Model 2 considered here?! and the dominance of A, <
states was unveiled at small J/U, with B, P! close competi-
tor. In our investigations shown below, in the “realistic” re-
gime of couplings the RPA dominant pairing tendency al-
ways has nodes or quasi-nodes, an interesting result in view
of the current experimental controversy between ARPES and
other techniques with regards to the nodal structure of the
superconducting state. It is also important to remark that
other irreducible representations are closely competing with
those that dominate and small changes in parameters alter
their relative dominance.

A. Random phase approximation formalism

For completeness, here the RPA approximation will be
briefly reviewed, with emphasis on some technical aspects.
This section follows the formalism already described in Refs.
21 and 65. Assuming that spin fluctuations (excitations in the
paramagnetic state above the critical temperature, also called
paramagnons) are responsible for the pairing mechanism
present in the iron-pnictides, the RPA method will be used to
study these fluctuations (caused by itinerant carriers) beyond
the mean-field level. In linear response theory, prior to in-
cluding the many-body interactions, these spin-wavelike ex-
citations are obtained from the noninteracting Lindhard func-
tion (here defined for a multiorbital model)

xmm¢m=§GM&+m@mmx (13)
where each of the four indices needed to characterize the
Lindhard function takes the values [;=1,...,n, (i=1,...,4),
with n, the total number of orbitals being considered (here,
n,=3 or n,=5). The noninteracting Green’s function, which
describes the propagation of the elementary excitations
present in the noninteracting model, can be written as

E (1| pk)(uk|l3)

G, (o0 = 27 T )

; (14)

where bll(k)=(l,| uk) projects the tight-binding state |uk)
into the orbltal |}, where w labels which one of the 2n,
tight-binding bands (in the extended BZ, with one iron per
unit cell) the tight-binding state belongs to [with energy
E,(k)]. Introducing many-body interactions in the model, the
Lindhard function gives origin to (distinct) spin and charge
susceptibilities, which, calculated at the RPA level through a
Dyson equation, can be expressed as (using matrix equa-
tions)

~0
g =—X@ (15)

1-U°%"(q)

(q)

Xel@) = —"—"—,
1+ Ux(q)

(16)

where expressions for the nonzero matrix elements of U® and
U¢, in terms of the many-body interactions, can be found in
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FIG. 14. (Color online) Bare and RPA magnetic susceptibilities
vs BZ wave vector, at the values of U and J/U indicated, for the
five-orbital Model 1.

Refs. 21 and 65. The magnetic susceptibility (both RPA and
bare) to be shown below in, e.g., Fig. 14 is given by

x(a) = 52 (R (@72 (17)
Il

These RPA susceptibilities are used to construct a spin-
singlet pairing interaction describing the exchange of charge
(orbital) and spin fluctuations, resulting in an effective
electron-electron interaction®

N 3. PO PR ISP
(@)= S UR@ T - S UR@T + (0 + 0. (18)

Assuming that the dominant scattering occurs close to the
Fermi surface, one can calculate the scattering amplitude of a
Cooper pair between two points ar the Fermi surface [(K,
—-k) — (k’,—Kk’)], where the momenta k and k' are restricted
to the Fermi surface pockets i and j, which span the existing
pockets for the chemical potential used. To indicate this re-

striction a subscript i (or j) is added to the bands u and v in
question, and the (symmetrized) interaction vertex becomes

Likk)= X b2 (- k)b (KRe[Vyi(k k)]
Iy, l3ly
X b (Kb (= k'), (19)
J J
which, after plugging into the linearized Eliashberg equation,
results in a dimensionless pairing strength functional®’-%8

dkH dk\l ’ ’
%§zwmc mwamnmkmm>
Neg(k)]= - :

2

(20)

where the superconducting gap A(k) (in reciprocal space)
was separated into an amplitude A and a function g(k),
which should have the symmetry of one of the irreducible
representations of the corresponding point group (in the case
of the pnictides, the Dy, group is considered, with represen-
tations Ay, Ay, By, B, and E,). The stationary condition
leads to an eigenvalue problem defined over the Fermi sur-
face
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FIG. 15. (Color online) (a) RPA pairing eigenvalues vs U, at
J/U=0.15, for the five-orbital Model 1. The symmetries of each
eigenvalue are indicated. (b) Dominant A;, gap function with a
similar color convention as in Ref. 21 (blue and red denoting dif-
ferent signs). (c) Subdominant state belonging to the B,
representation.

, L , .
_g é;c_, ki 47721;F(k/)rii(k’k )gi(k") =Agi(k), (21)

which is an eigenvalue problem involving a matrix
[T'(k,k')], and where g,(k) is the value of the gap function
for a point k at the pocket i, and \ is the associated eigen-
value. The highest eigenvalue (normalized to 1) indicates
what gap function will have the highest critical temperature.
The dimension of the matrices to be diagonalized will be
determined by the number of k points taken along the Fermi
surface. For the calculations shown here, it was observed that
considering approximately 200 points along the Fermi sur-
face provides a good convergence. All calculations were
done at temperature 7=0.02 eV and an imaginary part 7
=10 was used to regularize the Green’s functions. All the
sums over the BZ were done with uniform 64 X 64 meshes
(calculations with a 128 X 128 mesh yielded qualitatively the
same results).

B. RPA pairing symmetries for the five-orbital Model 1

The RPA analysis of the “realistic” U and J/ U regime will
start here with the five-orbital Model 1. In Fig. 14, the RPA
results for the magnetic susceptibility yg are shown for two
values of J/U (and slightly different U). The case J/U
=0.15 is close but outside the physical region of Fig. 9 while
J/U=0.28 is clearly inside that region. However, with re-
gards to xs, the figure shows that there are no substantial
changes in the magnetic response for these two J/Us: an
approximately flat bare yg becomes a RPA yg with a sharp
peak at the correct wave vector (,0).

The RPA pairing eigenvalues \ are shown in Fig. 15(a) as
a function of U, at a constant J/U=0.15. Shown in (a) are
the four first eigenvalues that happened to have the four dif-
ferent symmetries that are indicated (as opposed to repeating
some symmetries). The dominant one is A,, in agreement
with Ref. 21 using the five-orbital Model 2. The actual pair-
ing function for this dominant eigenvalue is shown in Fig.
15(b). This is qualitatively of the form of the well-known s*~
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FIG. 16. (Color online) (a) RPA pairing eigenvalues vs U, at
J/U=0.28, for the five-orbital Model 1. The symmetries of each
eigenvalue are indicated. (b) Dominant A,, gap function with a
similar color convention as in Ref. 21 (blue and red denoting dif-
ferent signs). (c) Subdominant state belonging to the By,
representation.

pairing with different signs between the hole and electron
pockets. However, the actual gap values are not uniform
along each pocket. Actually, all the pockets present some
narrow regions where the gap functions nearly vanish, a fea-
ture quite reminiscent of nodes (dubbed here quasinodes®).
Overall, these results, and those presented below for Model 2
and for the three-orbital model, are compatible with the re-
cent observations in Refs. 22 and 65 that pockets at (7, )
suppress nodes in the A;, sector while the absence of those
pockets produce a nodal A;, (note that in some of our results
here and below, the superconducting order parameter at
(7r,77) is weak and difficult to see).

In Fig. 15(c), the pairing function of the subdominant ei-
genvalue is shown. By mere inspection it is clear that it
belongs to the B, sector, in qualitative agreement with Ref.
21 that also identified this symmetry as the first competitor to
Ay, Thus, for J/U=0.15 our results are similar to those pre-
viously reported?! and have the value of providing a test of
our procedure. However, Fig. 15(a) contains extra informa-
tion not discussed before: it also shows that two other eigen-
values are nearly degenerate with B, and in view of the
approximate nature of the calculation they should also be
considered as important competitors. These extra competi-
tors belong to the B,, and A,, sectors. In particular the B, is
compatible with the Lanczos results found for the two-orbital
model in a similar “intermediate U” region of parameter
space.!3

Figure 16 provides novel interesting information. Switch-
ing now to J/U=0.28, i.e., inside the U-J/U region consid-
ered realistic based on neutron and ARPES experiments, the
dominant eigenvalue now belongs to the A,, irreducible rep-
resentation [with a gap function shown in Fig. 16(b)]. B,
[see Fig. 16(c)] is still the subdominant tendency but it is
nearly degenerate with B,,. For this value of J/U the A,
channel is fourth in the relative order. Thus, a relatively
small variation in J/U induces a qualitatively drastic rear-
rangement of pairing eigenvalues. However, all of them have
nodes (or quasinodes as in the case of A;,). Thus, it appears
unavoidable to conclude that nodal superconductivity should
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FIG. 17. (Color online) Bare and RPA magnetic susceptibilities
vs BZ wave vector, at the values of U and J/U indicated, for the
five-orbital Model 2.

be present in the pnictides, at least within pairing tendencies
that rely on electronic mechanisms (and within the RPA and
mean-field approximations).

The presence of pairing states with nodes also extends to
the regime of electron doping. For instance, for density n
=6.125 our RPA studies (not shown) indicate the dominance
of a By, state for J/U=0.28 and 0.35 with an A, state with
nodes being the subdominant pairing. While small changes
alter the relative balance between the many competing states,
all of those states, including the A; ¢ present a nodal (or
quasinodal) structure at the RPA level used here.

It is worth discussing these results in a historical context.
In previous RPA studies of one-orbital Hubbard models in
the spin-singlet channel, it was observed a dominance of the
well-known d,2_j2-wave state over other channels.®” Calcula-
tions in the one-orbital context did not report the presence of
other pairing states so close to the dominant one as shown
here and in Ref. 21. In fact, the only competitors to the
d-wave state, that have been identified for the case of one
orbital, are spin-triplet s-wave odd-frequency states (not
studied in our present investigations due to their spin-triplet
nature). The appearance of odd-frequency states as competi-
tors was analyzed in studies on square lattices’® as well as on
triangular lattices.”! But among the spin-singlet states, the
dominance of d-wave was clear for one orbital. Thus, finding
in the multiorbital models so many spin-singlet even-
frequency states competing with the dominant ones is sur-
prising and merits further work. These results suggest that
within the pnictide family different pairing channels may be
stable in different pnictide compounds since small changes in
parameters, such as caused by chemical doping or pressure,
may lead to changes in the dominant pairing tendency.

C. RPA pairing symmetries for the five-orbital Model 2

For completeness, the RPA analysis for Model 2 is here
included. Model 2 was already studied in Ref. 21 but here
the focus will be on the realistic regime of U and J/U. In
Fig. 17, the RPA results for the magnetic susceptibility yg are
shown for representative values of U and J/U. In this re-
gime, there is a clearly dominant peak at wave vector (77,0),
although there are subdominant peaks at other momenta as
well. The results at other value of U and J/U in the vicinity
of the one shown are similar.

The corresponding RPA pairing eigenvalues A are shown
in Fig. 18(a) as a function of U, at a constant J/U=0.28.
Following a similar organization as in the case of Model 1,
shown in (a) are the four first eigenvalues. The dominant one
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FIG. 18. (Color online) (a) RPA pairing eigenvalues vs U, at
J1U=0.28, for the five-orbital Model 2. The symmetries of each
eigenvalue are indicated. (b) Dominant A;, gap function with a
similar color convention as in Ref. 21 (blue and red denoting dif-
ferent signs). (c) Subdominant state belonging to the By,
representation.

is A, with nodes, in agreement with Refs. 21 and 22. The
pairing function for this dominant eigenvalue is shown in
Fig. 18(b): it has different signs between the hole and elec-
tron pockets, and the actual gap values are not uniform along
each pocket, actually presenting nodes. In Fig. 18(c), the
pairing function of the subdominant eigenvalue is shown. It
belongs to the B, sector, as found in Ref. 21. The impor-
tance of our results is that using exactly the same formalism
our approach does properly reproduce previous results with
regards to the dominance of the A, sector for Model 2 while
Model 1 (with a very similar Fermi surface) has pairing in
other channels. This highlights again that very small changes
in parameters can dramatically alter the pairing instability
channel.

D. RPA pairing symmetries for the three-orbital model

To complete the RPA analysis, now the three-orbital
model will be considered. The results reported below will not
be as clear as in the previous case of five orbitals but these
results are presented here anyway to alert the reader of the
subtleties associated with RPA approximations. In spite of
the difficulties to be shown below, the pairing states that
dominate still have nodes. Thus, the general conclusion that
nodal superconductivity tends to be favored in Hubbard
models remains the same, at least within the approximations
used in our effort.

Figure 19 shows the RPA magnetic susceptibility for two
cases of interest, J/U=0.15 and 0.30, within the physical
region of Fig. 4. These results already illustrate the main
problem found here: although there is a small peak at wave
vector (77,0), there are other larger peaks at wave vectors
closer to (0,0). Thus, the results to be shown for the pairing
tendencies are in a magnetic background that does not cor-
respond to that of the pnictides experiments but it contains
states with a variety of wave vectors.

Figure 20(a) displays the U dependence of the pairing
eigenvalues at J/ U=0.25, inside the physical region for three
orbitals. Note that in this case it is the B,, symmetry that
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FIG. 19. (Color online) Bare and RPA magnetic susceptibility vs
BZ wave vector, at the values of U and J/U indicated, for the
three-orbital model. Note that in addition to a small peak at (,0),
there are larger peaks at other wave vectors.

dominates, as in Ref. 13, with A;, being subdominant. The
order parameter of the dominant B,, tendency is in Fig. 20(b)
while the subdominant A,, is in Fig. 20(c) (with the exotic
detail that in this case the two hole pockets carry a different
sign for the order parameter). The presence of the B,, ten-
dency was not only observed at the couplings of Fig. 20 and
n=4 but also in a wide range of J/U and varying the elec-
tronic density n to 4.1 and 3.9 (not shown). Thus, such nodal
pairing tendencies are robust. However, a more detailed
analysis of the RPA response of the three-orbital model, mo-
tivated by the multiple wave vectors in its magnetic state,
should be carried out in the future.

VI. CONCLUSIONS

In this paper, the undoped limit of the multiorbital Hub-
bard model for pnictides has been studied using a standard
mean-field approximation, similar to that employed in the
study of the single-orbital Hubbard model for the undoped
cuprates. Within this approximation, the magnitude of the
order parameter associated with the (#,0) magnetic order
was studied varying U and J/U. In addition, the one-particle
spectral function A(k,w) was also analyzed. Comparing re-
sults against neutron scattering and ARPES experiments, al-
low us to define regions in parameter space, dubbed physical
regions, where the mean-field model Hamiltonian predictions
are in qualitative agreement with the above mentioned ex-
periments. These regions are relatively small in size since the
ground state in this regime must be simultaneously metallic,
magnetic with order parameters in the range found by neu-
trons, and with Fermi surfaces containing satellite pockets
induced by the magnetic state near the I"-point hole pockets
of the original band structure. Although fluctuations beyond
the mean-field approximation are expected to enhance the
physical regions, our results still provide important con-
straints on the couplings to be used for theoretical studies of
multiorbital Hubbard models for pnictides.

In addition, in the regime of U and J/U described above,
the RPA approximation allowed us to make predictions about
the dominant pairing tendencies in the physical regions.
While it is clear that several channels are competing in these
models, namely, that small changes in parameters can lead to
drastic changes in the dominant symmetries of the pairing
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FIG. 20. (Color online) (a) RPA pairing eigenvalues vs U, at
J/U=0.25, for the three-orbital model. The symmetries of each ei-
genvalue are indicated. (b) Dominant B,, gap function with a simi-
lar color convention as in Ref. 21 (blue and red denoting different
signs). (c) Subdominant state belonging to the A;, representation.

states, the common property that emerges is the presence of
nodal superconducting states in those physical regions.
Within these models it appears very difficult to stabilize
states without nodes. Even in regimes where the A,, state
dominates, it still has quasinodes (very small values of the
amplitude at particular Fermi surface points) or true nodes.
Thus, in these regards our results are more compatible with
the bulk measurements that reported nodal superconductivity
than with the ARPES experiments reporting nodeless super-
conductivity in doped pnictides. However, our studies are
based on approximations that need to be refined. Hopefully,
our study will initiate a debate on what are the true dominant
tendencies in the multiorbital Hubbard model for pnictides,
helping to decide if the mechanism is electronic or phononic.

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Department of
Energy, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division (A.M. and E.D.), the Deutsche
Forschungsgemeinschaft under the Emmy-Noether program
(M.D.), the Sun Yat-Sen University under the Hundred Tal-
ents program (D.X.Y.), and by the W. M. Keck Foundation
(R.Y.). G.B.M. especially acknowledges the help of S.
Graser in developing the RPA code, as well as discussions
with A. Liebsch. E.D. acknowledges useful discussions with
D. Scalapino.

APPENDIX: PARAMETERS OF FIVE-ORBITAL MODEL 1

Using a similar notation as for three orbitals, and the pa-
rameters of Table II below, the tight-binding portion of the
five-orbital Model 1 is Hyp(K)=Zy ;T (K)dy , i 1.0
where

T11/22 = Zti/ly COS kX + 2[11

Vix COS kyy

+ 4t)lcy] cos k, cos k, * 21! (cos 2k, — cos 2k,)
11 11
+ 4txxy/xy_\r Cos zkx COoS ky + 4txyy/xxy

+4rt!

xxyy

cos k, cos 2k,

cos 2k, cos 2k, + €12, (A1)
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TABLE II. Parameters for the tight-binding portion of the five-
orbital Model 1 used here. The overall energy unit is electron volts.

" i=x  i=y i=xy i=xx i=xxy i=xyy Ii=xxyy

mn=11 -0.355 -0.17 0.21 -0.1 0.01 0 0

mn=33 0.1 0.137 -0.03

mn=44  0.193 -0.115 0 0 0

mn=55 -0.213 0 0 0

mn=12 -0.22 0 0

mn=13 -0.35 0.01 0.02

mn=14  0.55 -0.13 0.01

mn=15 -0.25 0 0

mn=34 -0.009

mn=35 0.06 —-0.06

mn=45 -0.05 0
€11 €33 €44 €55

031 =025 043 =08

Ty3 = 212%(cos k, + cos ky) + 4t)3; cos k, cos k, + 2133 (cos 2k,

+cos 2k,) + €33, (A2)

Ty =21(cos k, + cos ky) + 4tj4c;1 cos k, cos k, + 2% (cos 2k,

44
t XXy

+cos 2k,) +4

+ 4tjiyy cos 2k, cos 2k, + €44, (A3)

(cos 2k, cos k, + cos k, cos 2k,)
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Tss = 212>(cos k, + cos ky) + 2173(cos 2k, + cos 2k,)

+412 (cos 2k, cos ky + cos k, cos 2k,)

XXy
+ 4t)5£yy cos 2k.cos 2k, + €ss, (A4)
Tiy =Ty =4ty sin k,sin k, — 41,7 (sin 2k, sin k,
+sin k, sin 2k,) — 41,7 sin 2k, sin 2k, (A5)

_ 7 _ 13 . .13 -
Ty303= T3z = % 2it,” sin ky, & 4it, 3 sin kyy, cos ky,

T 4i3 (sin 2k, €08 kyjy = cos 2k, sin ky;,),

XXy
(A6)
Tyappa = Taypap = 201" sin kyy, + 4it'? sin k k
14724 = Lgyja0 = 211, SIN Ky, + 411, SIN Ky, COS Ky
+ 4it)1;y sin 2k, cos kyy, (A7)
T _7_~ _2~15- k 4.15. k k
15/25 = 151/50 = 211" SIN Ky, — 41f | SIN Ky, COS Ky
— it sin 2k, cos 2k, (A8)

Tay=Ty3 =41, (sin k, sin 2k, —sin 2k, sin k,), (A9)

xy

Tss=Ts3=21(cos k, —cos ky) + 43

w(cos 2k, cos k,

- cos k, cos 2k,), (A10)

Tys="Tsy =41}, sin k, sin k, + 41, sin 2k, sin 2.
(A11)
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